We propose a novel teacher-student model for semi-supervised multi-organ segmentation. In teacher-student model, data augmentation is usually adopted on unlabeled data to regularize the consistent training between teacher and student. We start from a key perspective that fixed relative locations and variable sizes of different organs can provide distribution information where a multi-organ CT scan is drawn. Thus, we treat the prior anatomy as a strong tool to guide the data augmentation and reduce the mismatch between labeled and unlabeled images for semi-supervised learning. More specifically, we propose a data augmentation strategy based on partition-and-recovery N$^3$ cubes cross- and within- labeled and unlabeled images. Our strategy encourages unlabeled images to learn organ semantics in relative locations from the labeled images (cross-branch) and enhances the learning ability for small organs (within-branch). For within-branch, we further propose to refine the quality of pseudo labels by blending the learned representations from small cubes to incorporate local attributes. Our method is termed as MagicNet, since it treats the CT volume as a magic-cube and $N^3$-cube partition-and-recovery process matches with the rule of playing a magic-cube. Extensive experiments on two public CT multi-organ datasets demonstrate the effectiveness of MagicNet, and noticeably outperforms state-of-the-art semi-supervised medical image segmentation approaches, with +7% DSC improvement on MACT dataset with 10% labeled images.
translated by 谷歌翻译
Sequence generation demonstrates promising performance in recent information extraction efforts, by incorporating large-scale pre-trained Seq2Seq models. This paper investigates the merits of employing sequence generation in relation extraction, finding that with relation names or synonyms as generation targets, their textual semantics and the correlation (in terms of word sequence pattern) among them affect model performance. We then propose Relation Extraction with Label Augmentation (RELA), a Seq2Seq model with automatic label augmentation for RE. By saying label augmentation, we mean prod semantically synonyms for each relation name as the generation target. Besides, we present an in-depth analysis of the Seq2Seq model's behavior when dealing with RE. Experimental results show that RELA achieves competitive results compared with previous methods on four RE datasets.
translated by 谷歌翻译
Forecasts by the European Centre for Medium-Range Weather Forecasts (ECMWF; EC for short) can provide a basis for the establishment of maritime-disaster warning systems, but they contain some systematic biases.The fifth-generation EC atmospheric reanalysis (ERA5) data have high accuracy, but are delayed by about 5 days. To overcome this issue, a spatiotemporal deep-learning method could be used for nonlinear mapping between EC and ERA5 data, which would improve the quality of EC wind forecast data in real time. In this study, we developed the Multi-Task-Double Encoder Trajectory Gated Recurrent Unit (MT-DETrajGRU) model, which uses an improved double-encoder forecaster architecture to model the spatiotemporal sequence of the U and V components of the wind field; we designed a multi-task learning loss function to correct wind speed and wind direction simultaneously using only one model. The study area was the western North Pacific (WNP), and real-time rolling bias corrections were made for 10-day wind-field forecasts released by the EC between December 2020 and November 2021, divided into four seasons. Compared with the original EC forecasts, after correction using the MT-DETrajGRU model the wind speed and wind direction biases in the four seasons were reduced by 8-11% and 9-14%, respectively. In addition, the proposed method modelled the data uniformly under different weather conditions. The correction performance under normal and typhoon conditions was comparable, indicating that the data-driven mode constructed here is robust and generalizable.
translated by 谷歌翻译
The current optical communication systems minimize bit or symbol errors without considering the semantic meaning behind digital bits, thus transmitting a lot of unnecessary information. We propose and experimentally demonstrate a semantic optical fiber communication (SOFC) system. Instead of encoding information into bits for transmission, semantic information is extracted from the source using deep learning. The generated semantic symbols are then directly transmitted through an optical fiber. Compared with the bit-based structure, the SOFC system achieved higher information compression and a more stable performance, especially in the low received optical power regime, and enhanced the robustness against optical link impairments. This work introduces an intelligent optical communication system at the human analytical thinking level, which is a significant step toward a breakthrough in the current optical communication architecture.
translated by 谷歌翻译
Adversarial patch is an important form of real-world adversarial attack that brings serious risks to the robustness of deep neural networks. Previous methods generate adversarial patches by either optimizing their perturbation values while fixing the pasting position or manipulating the position while fixing the patch's content. This reveals that the positions and perturbations are both important to the adversarial attack. For that, in this paper, we propose a novel method to simultaneously optimize the position and perturbation for an adversarial patch, and thus obtain a high attack success rate in the black-box setting. Technically, we regard the patch's position, the pre-designed hyper-parameters to determine the patch's perturbations as the variables, and utilize the reinforcement learning framework to simultaneously solve for the optimal solution based on the rewards obtained from the target model with a small number of queries. Extensive experiments are conducted on the Face Recognition (FR) task, and results on four representative FR models show that our method can significantly improve the attack success rate and query efficiency. Besides, experiments on the commercial FR service and physical environments confirm its practical application value. We also extend our method to the traffic sign recognition task to verify its generalization ability.
translated by 谷歌翻译
In recent years, large amounts of effort have been put into pushing forward the real-world application of dynamic digital human (DDH). However, most current quality assessment research focuses on evaluating static 3D models and usually ignores motion distortions. Therefore, in this paper, we construct a large-scale dynamic digital human quality assessment (DDH-QA) database with diverse motion content as well as multiple distortions to comprehensively study the perceptual quality of DDHs. Both model-based distortion (noise, compression) and motion-based distortion (binding error, motion unnaturalness) are taken into consideration. Ten types of common motion are employed to drive the DDHs and a total of 800 DDHs are generated in the end. Afterward, we render the video sequences of the distorted DDHs as the evaluation media and carry out a well-controlled subjective experiment. Then a benchmark experiment is conducted with the state-of-the-art video quality assessment (VQA) methods and the experimental results show that existing VQA methods are limited in assessing the perceptual loss of DDHs. The database will be made publicly available to facilitate future research.
translated by 谷歌翻译
The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.
translated by 谷歌翻译
Graph learning aims to learn complex relationships among nodes and the topological structure of graphs, such as social networks, academic networks and e-commerce networks, which are common in the real world. Those relationships make graphs special compared with traditional tabular data in which nodes are dependent on non-Euclidean space and contain rich information to explore. Graph learning developed from graph theory to graph data mining and now is empowered with representation learning, making it achieve great performances in various scenarios, even including text, image, chemistry, and biology. Due to the broad application prospects in the real world, graph learning has become a popular and promising area in machine learning. Thousands of works have been proposed to solve various kinds of problems in graph learning and is appealing more and more attention in academic community, which makes it pivotal to survey previous valuable works. Although some of the researchers have noticed this phenomenon and finished impressive surveys on graph learning. However, they failed to link related objectives, methods and applications in a more logical way and cover current ample scenarios as well as challenging problems due to the rapid expansion of the graph learning.
translated by 谷歌翻译
Hierarchical semantic structures, naturally existing in real-world datasets, can assist in capturing the latent distribution of data to learn robust hash codes for retrieval systems. Although hierarchical semantic structures can be simply expressed by integrating semantically relevant data into a high-level taxon with coarser-grained semantics, the construction, embedding, and exploitation of the structures remain tricky for unsupervised hash learning. To tackle these problems, we propose a novel unsupervised hashing method named Hyperbolic Hierarchical Contrastive Hashing (HHCH). We propose to embed continuous hash codes into hyperbolic space for accurate semantic expression since embedding hierarchies in hyperbolic space generates less distortion than in hyper-sphere space and Euclidean space. In addition, we extend the K-Means algorithm to hyperbolic space and perform the proposed hierarchical hyperbolic K-Means algorithm to construct hierarchical semantic structures adaptively. To exploit the hierarchical semantic structures in hyperbolic space, we designed the hierarchical contrastive learning algorithm, including hierarchical instance-wise and hierarchical prototype-wise contrastive learning. Extensive experiments on four benchmark datasets demonstrate that the proposed method outperforms the state-of-the-art unsupervised hashing methods. Codes will be released.
translated by 谷歌翻译
Determining causal effects of temporal multi-intervention assists decision-making. Restricted by time-varying bias, selection bias, and interactions of multiple interventions, the disentanglement and estimation of multiple treatment effects from individual temporal data is still rare. To tackle these challenges, we propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt). TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions which further improves estimation accuracy. Through implementing experiments on two real-world datasets from distinct fields, the proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
translated by 谷歌翻译